## ADVANCED PLACEMENT PHYSICS MECHANICS TABLE OF INFORMATION

## CONSTANTS AND CONVERSION FACTORS

Universal gravitational constant,  $G = 6.67 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ 

Acceleration due to gravity at Earth's surface,  $g = 9.8 \text{ m/s}^2$ 

Magnitude of the gravitational field strength at the Earth's surface, g = 9.8 N/kg

| PREFIXES         |              |   |  |  |
|------------------|--------------|---|--|--|
| Factor           | Prefix Symbo |   |  |  |
| $10^{12}$        | tera         | T |  |  |
| 10°              | giga         | G |  |  |
| $10^{6}$         | mega         | M |  |  |
| $10^3$           | kilo         | k |  |  |
| $10^{-2}$        | centi        | c |  |  |
| $10^{-3}$        | milli        | m |  |  |
| $10^{-6}$        | micro        | μ |  |  |
| 10 <sup>-9</sup> | nano         | n |  |  |
| $10^{-12}$       | pico         | p |  |  |

|         | hertz,    | Hz | newton, | N |
|---------|-----------|----|---------|---|
| UNIT    | joule,    | J  | second, | S |
| SYMBOLS | kilogram, | kg | watt,   | W |
|         | meter,    | m  |         |   |

| VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES |    |              |     |              |     |              |     |
|-----------------------------------------------------|----|--------------|-----|--------------|-----|--------------|-----|
| θ                                                   | 0° | 30°          | 37° | 45°          | 53° | 60°          | 90° |
| $\sin \theta$                                       | 0  | 1/2          | 3/5 | $\sqrt{2}/2$ | 4/5 | $\sqrt{3}/2$ | 1   |
| $\cos \theta$                                       | 1  | $\sqrt{3}/2$ | 4/5 | $\sqrt{2}/2$ | 3/5 | 1/2          | 0   |
| $\tan \theta$                                       | 0  | $\sqrt{3}/3$ | 3/4 | 1            | 4/3 | $\sqrt{3}$   | 8   |

The following assumptions are used in this exam.

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.

## **MECHANICS**

|                                                                                                            | WECHIN                                                                                     |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| $v_x = v_{x0} + a_x t$                                                                                     | a = acceleration $E =$ energy                                                              |
| $x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$                                                                    | f= frequency                                                                               |
| $v_{x}^{2} = v_{x0}^{2} + 2a_{x}(x - x_{0})$                                                               | F = force $h = $ height                                                                    |
|                                                                                                            | J = impulse                                                                                |
| $\Delta x = \int v_x(t) dt$                                                                                | k = spring constant                                                                        |
| $\Delta v_{x} = \int a_{x}(t) dt$                                                                          | K = kinetic energy<br>$\ell = \text{length}$                                               |
| $\int \Delta v_x - \int u_x(t) dt$                                                                         | m = mass                                                                                   |
| $\vec{x}_{cm} = \frac{\sum m_i \vec{x}_i}{\sum m_i}$                                                       | M = mass                                                                                   |
| $\int_{-\infty}^{\infty} \sum_{i} m_{i}$                                                                   | p = momentum<br>P = power                                                                  |
| $\int \vec{r} dm$                                                                                          | r = radius, distance, or position                                                          |
| $\vec{r}_{\rm cm} = \frac{\int \vec{r}  dm}{\int dm}$                                                      | t = time                                                                                   |
| 1                                                                                                          | T = period $U = $ potential energy                                                         |
| $\lambda = \frac{d}{d\ell} m(\ell)$                                                                        | v = velocity or speed                                                                      |
| $\sum ec{F} = ec{F}$                                                                                       | W = work $x = $ position or distance                                                       |
| $\vec{a}_{\text{sys}} = \frac{\sum \vec{F}}{m_{\text{sys}}} = \frac{\vec{F}_{\text{net}}}{m_{\text{sys}}}$ | y = height                                                                                 |
|                                                                                                            | $\lambda = \text{linear mass density}$                                                     |
| $\left  \left  \vec{F}_g \right  = G \frac{m_1 m_2}{r^2}$                                                  | $\mu$ = coefficient of friction                                                            |
| $\left  \left  \vec{F}_f \right  \le \left  \mu \vec{F}_N \right $                                         |                                                                                            |
| $\vec{F}_s = -k\Delta \vec{x}$                                                                             |                                                                                            |
| $a_c = \frac{v^2}{r} = r\omega^2$                                                                          |                                                                                            |
| $T = \frac{1}{f}$                                                                                          |                                                                                            |
| $K = \frac{1}{2}mv^2$                                                                                      |                                                                                            |
| $W = \int_{a}^{b} \vec{F} \cdot d\vec{r}$                                                                  | $W$ $\Delta E$                                                                             |
| $\Delta K = \sum W_i = \sum F_{\parallel,i} d_i$                                                           | $P_{\text{avg}} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$ $dW$                     |
| $\Delta U = -\int_{a}^{b} \vec{F}_{cf}(r) \cdot d\vec{r}$                                                  | $P_{\text{inst}} = \frac{dW}{dt}$ $\vec{p} = m\vec{v}$                                     |
| $F_{x} = -\frac{dU(x)}{dx}$                                                                                | $\vec{F}_{\text{net}} = \frac{d\vec{p}}{dt}$                                               |
| $U_s = \frac{1}{2} k \left( \Delta x \right)^2$                                                            | $\vec{J} = \int_{t_{-}}^{t_{2}} \vec{F}_{\text{net}}(t) dt = \Delta \vec{p}$               |
| $U_G = -G \frac{m_1 m_2}{r}$                                                                               | '                                                                                          |
| $\Delta U_g = mg\Delta y$                                                                                  | $\vec{v}_{\rm cm} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$ |
| i                                                                                                          |                                                                                            |

$$\omega = \frac{d\theta}{dt} \qquad a = \operatorname{acceleration}$$

$$d = \operatorname{distance}$$

$$f = \operatorname{frequency}$$

$$\alpha = \frac{d\omega}{dt} \qquad I = \operatorname{rotational inertia}$$

$$\omega = \omega_0 + \alpha t \qquad k = \operatorname{spring constant}$$

$$K = k \operatorname{inetic energy}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \qquad \ell = \operatorname{length}$$

$$L = \operatorname{angular momentum}$$

$$m = \operatorname{mass}$$

$$v = r\omega \qquad p = \operatorname{momentum}$$

$$a_r = r\alpha \qquad position$$

$$t = \operatorname{time}$$

$$I_{\text{tot}} = \sum I_i = \sum m_i r_i^2 \qquad T = \operatorname{period}$$

$$v = \operatorname{velocity or speed}$$

$$W = \operatorname{work}$$

$$x = \operatorname{position or distance}$$

$$\alpha = \operatorname{angular acceleration}$$

$$\theta = \operatorname{angle}$$

$$\alpha_{\text{sys}} = \frac{\Sigma \tau}{I_{\text{sys}}} = \frac{\tau_{\text{net}}}{I_{\text{sys}}} \qquad \theta = \operatorname{phase angle}$$

$$\omega = \operatorname{angular frequency}$$
or angular speed

$$W = \int \tau \cdot d\theta$$

$$\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega}$$

$$\Delta L = \int \tau \, dt$$

$$\Delta x_{\text{cm}} = r\Delta\theta$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T_{\text{phys}} = 2\pi \sqrt{\frac{I}{mgd}}$$

$$x = x_{\text{max}} \cos(\omega t + \phi)$$

| GEOMETRY AND TRIGONOMETRY  |                                                 |   |                                                                    |                             |
|----------------------------|-------------------------------------------------|---|--------------------------------------------------------------------|-----------------------------|
| Rectangle                  | Rectangular Solid                               |   | A = area                                                           | Right Triangle              |
| A = bh                     | $V = \ell w h$                                  |   | b = base $C = circumference$                                       | $a^2 + b^2 = c^2$           |
| Triangle                   | Cylinder                                        | S | h = height                                                         | $\sin \theta = \frac{a}{a}$ |
| $A = \frac{1}{2}bh$        | $V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$ |   | $\ell = \text{length}$ $r = \text{radius}$ $s = \text{arc length}$ | $\cos \theta = \frac{b}{c}$ |
| Circle                     | Sphere                                          |   | S = surface area $V = $ volume                                     | $\tan \theta = \frac{a}{h}$ |
| $A = \pi r^2$ $C = 2\pi r$ | $V = \frac{4}{3}\pi r^3$                        |   | $w = $ width $\theta = $ angle                                     | c 90° α                     |
| $s = r\theta$              | $S = 4\pi r^2$                                  |   |                                                                    | b                           |

| VECTORS                                                                                                                               | CALCULUS                                                                                                 | IDENTITIES                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| $ \vec{A} \cdot \vec{B}  = AB \cos \theta$ $ \vec{A} \times \vec{B}  = AB \sin \theta$ $ \vec{r}  = (A\hat{i} + B\hat{j} + C\hat{k})$ | $\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$ $\frac{d}{dx}(x^n) = nx^{n-1}$                              | $\log(a \cdot b^{x}) = \log a + x \log b$ $\sin^{2} \theta + \cos^{2} \theta = 1$ $\sin(2\theta) = 2\sin\theta\cos\theta$ |
| $\vec{C} = \vec{A} + \vec{B}$ $\vec{C} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$                                                     | $\frac{d}{dx}(e^{ax}) = ae^{ax}$ $\frac{d}{dx}(\ln ax) = \frac{1}{x}$                                    | $\frac{\sin\theta}{\cos\theta} = \tan\theta$                                                                              |
|                                                                                                                                       | $\frac{d}{dx} \left[ \sin(ax) \right] = a \cos(ax)$ $\frac{d}{dx} \left[ \cos(ax) \right] = -a \sin(ax)$ |                                                                                                                           |
|                                                                                                                                       | $\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1$ $\int e^{ax} dx = \frac{1}{a} e^{ax}$                   |                                                                                                                           |
|                                                                                                                                       | $\int \frac{dx}{x+a} = \ln x+a $                                                                         |                                                                                                                           |
|                                                                                                                                       | $\int \cos(ax)  dx = \frac{1}{a} \sin(ax)$ $\int \sin(ax)  dx = -\frac{1}{a} \cos(ax)$                   |                                                                                                                           |